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Abstract 
 
      A short review of recent studies of the notion of spin is presented, which shows that the spin 
is not a point property of the particle in question but a characteristic that covers a quite large 
volume around the particle and also involves the interaction of the particle with the ambient space. 
A cloud of excitations named inertons by the author, which accompany the moving particle, carry 
out the interaction of the particle with the space and hence the interaction with another particle. 
The presence of inertons allows us to completely resolve the old problem of spin associated with 
the reasons that provide the appearance of half-integer angular momentum ½ℏ. Besides, it allows 
one to learn more on the behavior of canonical particles in external fields, such as magnetic, 
electromagnetic and also inerton.   
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1. Introduction 

There are many works devoted to the study of different aspects associated with the notion of 
spin (see, e.g. monograph [1] and references herein), which usually is treated as an intrinsic form 
of angular momentum carried by an electron or another elementary particle. Spin is considered 
like a vector quantity, which is an inner property of a particle and this characteristic is rather 
isotropic for a free particle. At the same time, spin has a definite magnitude and orientation, but 
quantization makes this orientation different from that of an ordinary vector. 
      The Dirac’s theory of the electron seems the most suitable for the description of spin and  
magnetic moment of the electron and atoms including atoms in condensed media, and such a 
situation is not in contradiction with Pauli’s exclusion principle, which showed detailed 
experimental and theoretical studies of Oudet and Lochak [2]. In his further work on spin, Oudet 
[3-8] discussed the Dirac equation for the half integer spin and angular momentum. He notes that 
according to the solutions of the Dirac equation, it is clear that the ns states correspond to just one 
spin state, contrary to that is generally supposed. The two sub-shells of the np, namely, nd and nf 
shells correspond to an additional quantum state to that of the ns states with a different number of 
states, which is exhibited with the Zeeman effect. Besides, Oudet notes that the same situation 
takes place at the calculation of the magnetic moment of different compounds.  
        Oudet [3-8] notes that such a behavior of spin is different from the classical notion of spin 
introduced by Uhlenbeck and Goudsmit [9] who proposed spin just to explain the two subshells 
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np:  nd and nf. Recall that according to Uhlenbeck and Goudsmit [9], the spin of a particle behaves 
like an angular momentum and, therefore, has an associated magnetic moment Μs = 𝑔𝜇B𝐒/ℏ  
where S is the spin operator,  𝑔  is a constant introduced to produce the best fit with experiment. 
The interaction with a magnetic field is proportional to Μs ∙ 𝐁 (this is the basis of the NMR 
technique). It is found that good fits to experimental data are obtained when 𝑔 = 2 , which means 
that the spin gyromagnetic ratio 𝑔𝜇B/ℏ  is twice as large as the orbital gyromagnetic ratio 𝜇B/ℏ .  
         Based on his experiments Oudet [3-7] showed that in the Dirac equation all the spinor 
components 𝜓. (𝑗 = 1, 433333) could be regarded as being an exchange by “grains” between the electron 
and its field, where he understood a “grain” to be an element of the total electron mass. So Oudet’s 
studies insist on involving some intrinsic processes inside the electron, which are responsible for 
its spin. He reasons that the action associated with rotation of the electron in an hydrogen atom 
cannot be correctly described by the product of two vectors, the momentum p and displacement 
𝑑𝐥, which lie in one plane. These two vectors must necessarily have two components in orthogonal 
planes so that the action results from exchanges in volume, i.e. the plane rotation has been the 
result of two orthogonal rotations. Thus only when the momentum p is decomposed into two 
components, Oudet [6] easily derives the half-integer angular momentum 𝑀 = ½ℏ. He [9] further 
says that there is always the same number of negative and positive values of the angular 
momentum, but the contribution proportional to ½ℏ has always the same direction. This half-
integer contribution is associated to the own rotation of the electron and such spin contribution is 
always positive. Accordingly there is just one kind of spin but two different sub-shells. 
         Oudet [6] pointed out that half-integer numbers belonging to the model of Dirac 
consequently consolidated the assumption of spin, however, the Dirac approach describes the 
properties of a point. Although the studies performed to date show that the property of spin is 
associated rather with particle’s own rotation. Oudet emphasized that the own rotation of the 
electron is a characteristic of volume and the study of the properties of a point in classical 
mechanics or special relativity do not reveal the characteristics of this volume. The concept of spin 
escapes Dirac’s theory just as the theory of Sommerfeld. 
        Thus, spin, which gives the half-integer angular momentum, is simultaneously a point-like 
solution of the Dirac equations and the solution of the complicated motion of the electron in orbit, 
as shown by Oudet. 
       We can also mention recent studies of Olszewski [10] who considers the mechanical angular 
momentum and magnetic moment of the electron and proton spin using the uncertainty principle 
for energy and time. In his model the spin effect is treated as a consequence of the introduced size 
of the electron (or proton), which is chosen to be equal to the particle’s Compton wavelength. Such 
a hypothesis then allowed him to reconsider the spin motion on the basis of the old quantum theory, 
which gave a quantum number 𝑛 = ½ as the index of the spin state acceptable for the electron and 
proton. However, though the quantum number is suitable with the experimental data, a helical 
trajectory suggested for the electron in the hydrogen atom looks very disputable (no any reasonable 
potential has been given to keep the electron in such a path).  
      In the present paper we consider the spin as it follows from a submicroscopic theory of space 
developed by the author [1]. The major principles of the motion of a particle in space constructed 
as a mathematical lattice of primary topological balls is described and it is shown how the particle’s 
wave 𝜓-fucntion is interpreted in the real space, what are its content and structure. The appearance 
and properties of the spin are considered in the smallest detail.   
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2. The electron as an extended object  
Recently Hofer [11, 12] examining his own experiments has proposed a theory of extended 

electrons in which their wave properties are related to some form of density oscillation. In his 
theory a free electron traveling along the z-axis with a constant velocity  undergoes a density 
oscillation, which is described by a plane wave 𝜌(𝑧, 𝑡) = =

>
𝜌? ∙ [1 + cos	(4𝜋𝑧/𝜆 − 4𝜋𝜈𝑡)] and 

then the Schrödinger wave function is determined as  
 
         𝜓 = J𝜌?exp	[𝑖(2𝜋𝑧/𝜆 − 2𝜋𝜈𝑡)].                                (1) 

 
The spin of an electron is defined as  
 
    𝜓𝐞>𝜓P = 𝜌? ∙ [𝐞> + sin	(2𝜋𝑧/𝜆 − 2𝜋𝜈𝑡)𝐞=]         (2) 
 
where the directions of the reference vectors 𝐞= and 𝐞> are perpendicular to the direction of 
electron motion. Thereby the spin vector has the form 𝐬 = =

>
	𝜓𝐞>𝜓P and is oriented under an angle 

of 𝜋/4 to the direction of the electron velocity vector. Thus Hofer, using geometric algebra, or 
Clifford algebra determined the spin of an electron with respect to the velocity vector of the 
electron, i.e. as a property of the electron itself, but not with respect to the external magnetic field. 
Spin-properties of the electron are referred to intrinsic field components and such description 
satisfies the measurements of spin in an external field yielding the two possible opposite 
orientations. Hofer’s theory allows the consideration of spin-dynamics of single electrons in terms 
of a modified Landau-Lifshitz equation, which is in agreement with experimental manifestations 
of spin. Thus, Hofer’s approach demonstrates the importance of the internal structure of the 
electron in understanding the notion of spin.  

Lévy-Leblond [13] (see also Ref. 14) performed an important research – he linearized the 
Schrödinger equation. He started from the Schrödinger equation written in the operator form 

 
                   𝑆U𝜓 = 0,					  𝑆U ≡ 𝑖ℏ X

XY
+ ℏZ

>[
∆	= 𝐸̂ − 𝒑̀>/(2𝑚).                               (3) 

 
The equation is symmetric with respect to time (𝜕/𝜕𝑡) and space (𝜕/𝜕r) derivatives, but is 
quadratic in 𝐩̀. To reach the symmetry, Lévy-Leblond constructed a wave equation in the form 
 
                   Θf𝜓 = g𝐴U𝐸̂ + 𝐁f ∙ 	 𝐩̀ + 𝐶Uj𝜓 = 0                         (4) 
 
where 𝐴U, 	𝐁f	 and 𝐶U are linear operators, rather than matrices. This allows him to split the 
Schrödinger equation to four linear equations 
 

																				k−𝑖 l0 0
𝟏 0n 𝐸̂ + l

𝛔̀ 0
0 𝛔n ∙ 𝐩̀ + 2𝑚𝑖 l

0 𝟏
0 0np q

𝜙
𝜂t = 0.                               (5)  

 
Here, the wave 𝜓-function becomes a 4-component matrix in which 
 

																																					𝜙 = q𝜙=𝜙>
t ,					𝜂 = l

𝜂=
𝜂>n.                                                                   (6) 

υ
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𝛔̀ is the vector whose components are the three Pauli matrices, 𝛔̀ = {𝜎w=, 𝜎w>, 𝜎wx}  and  
 

																																					𝟏 = l1 0
0 1n                                                                                     (7) 

 
is the unit matrix. Writing the matrix equations (5) results in the coupled system of equations for 
two-component spinors 𝜙 = (𝜙=, 𝜙>) and 𝜂 = (𝜂=, 𝜂>): 
 
    𝛔̀ ∙ 𝐩̀	𝜙 + 𝑖2𝑚𝜂 = 0,       𝛔̀ ∙ 𝐩̀	𝜂 − 𝑖𝐸̂𝜙 = 0.                                          (8) 
 

In the presence of an external electromagnetic field, the gauge invariance of the Schrödinger 
equation requires the known substitution  

 
																							zℏX

XY
	→ 	 zℏX

XY
− 𝑒𝑉(𝐫, 𝑡) ,								− 𝑖ℏ∇	→ 	−𝑖ℏ∇ − 𝑒𝐀(𝐫, 𝑡)                              (9)   

 
and then the linear equations of motion (8) become  

 
  𝛔̀ ∙ (𝐩̀ − 𝑒𝐀)	𝜙 + 𝑖2𝑚𝜂 = 0,     𝛔̀ ∙ (𝐩̀ − 𝑒𝐀)	𝜂 − 𝑖(𝐸̂ − 𝑒𝑉)𝜙 = 0.                  (10) 
 
After some transformations equations (10) are finally transferred to the Pauli equation 

 
   [𝐸̂ − 𝑒𝑉 − =

>[
(𝐩̀ − 𝑒𝐀)> + �ℏ

>[
𝛔̀ ∙ 𝐁f]𝜙 = 0                    (11) 

 
where 𝐩̀ = −𝑖ℏ∇ and the magnetic induction 𝐁 = ∇ × 𝐀. 

The last term in equation (11) describes the interaction energy of the intrinsic magnetic 
moment of the electron with the external magnetic field.  

The intrinsic magnetic moment 𝜇̂ = 𝑒ℏ𝜎w/(2𝑚) can be presented via the spin operator 𝐒̂ = =
>
𝛔̀  

of the particle studied 
 

																																							𝜇̂ = �ℏ
[
𝐒̂ = 𝑔𝜇B𝐒̂ = 2𝜇B𝐒̂	                                              (12) 

 
where the spin-Landé factor, or the gyromagnetic ratio 𝑔, is equal to 2, and 𝜇B is the Bohr 
magneton. So the linearized theory establishes the correct intrinsic magnetic moment of a spin-1/2 
particle.  
        In such a way, the existence of spin is a consequence of the linearization of the wave 
equations, i.e. a system of two coupled differential equations of first order, which then are coupled 
the electromagnetic field. These linear equations coupled with the electromagnetic field arrive at 
the Pauli equation (11). Besides, the Dirac equation, which is obtained by linearization of the 
Hamiltonian operator  𝐻f = J𝐩̀>𝑐> + 𝑚?

>𝑐>, also discloses the presence of spin in the particle.  
  Recent experimental studies of spin properties of electrons and neutrons have displayed the 

importance of the structure of the space in their vicinity. The mobility of electrons in the graphene 
honeycomb lattice indicates that the electron’s half-integer spin originates from the nearest space 
around the particles, rather than from the particles themselves [15].  
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Some experimental studies (see e.g. Ref. 1, Ch. 3) are interesting because they point to the fact 
that the spin of neutrons is not local and has an extension in space and the neutron’s spin wave 
function is quite extended and it can influence other neutrons at a distance. 

Baeßler [16] reviewed experiments on the gravitationally bound quantum states of neutrons 
where the lowest neutron quantum states in a gravitational potential were distinguished and 
characterized by a measurement of their spatial extent. In particular, it was observed an effect of a 
spin-dependent extra interaction of the ultra-cold neutron with a gravitational potential. One 
neutron spin-component was treated as attractive, the other repulsive at short distances and even 
unpolarized neutrons were sensitive to such spin-dependent interactions. 

In such a manner, the experiments point to the fact that all the information about spin lies in 
components of the wave function that is the product of a quantum particle. The situation with spin 
appears as follows. A particle has a dense kernel that moves with a velocity v and its motion is 
featured by four components of its wave function, or four sub wave functions. The named 
characteristics when coupled with an external electromagnetic field create a new characteristic of 
the particle (i.e. spin), which is manifested as an intrinsic form of the particle’s angular momentum.  

The phenomenon of spin can be clarified only when the nature of the wave function and its 4 
sub wave functions  become complete clear. De Broglie constantly emphasized the need for 
searching for the physical meaning of the wave 𝜓-function. Hofer [11, 12] claims that the wave 
𝜓-function represents the density (1)  of a particle. In the case of the electron, its wave function 
additionally receives a Poynting-like vector of the electromagnetic energy flux that also oscillates 
by the same rule as the density. But why does the density oscillate with this specific frequency? 
No idea that could lead to the splitting of 𝜓…  

 

 
Fig. 1. The wave 𝜓-function, which in the real space is presented by the core particle moving in the 
surrounding of its cloud of inertons. a – the vector velocity of inertons 𝑐inert, which are connected to the 
particle (𝑐	��⃗ 	and 𝑥⃗̇	 are the velocity of light and the particle velocity, respectively [1]).   
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The inner motion of canonical particles was studied in monograph [1] in detail, which shows 

that the particle is accompanied with a cloud of spatial excitations named inertons (Fig. 1). The 
radius to which inertons spread from the particle is   

 
                                                  Λ = 𝜆𝑐/𝜐	                                                                            (13) 

 
where 𝜆 is the particle’s de Broglie wavelength 𝜆 = ℎ/(𝑚𝜐), 𝜐 is the velocity of the particle, 𝑐 the 
speed of light, 𝑚 mass of the particle and ℎ  Planck’s constant. Nevertheless, we cannot consider 
the separation of the particle from the system {particle + its inerton cloud} as the first step to the 
description of spin, because this system as the whole is the primary object whose projection to a 
phase space is an abstract wave 𝜓-function that satisfies the Schrödinger equation. Although the 
particle is travelled as a corpuscle through the tessellattice (a mathematical lattice of primary 
topological balls) [1], its inertons migrate as excitations in a molecular crystal (i.e. they are hopping 
from cell to cell of the tessellattice).  

A hint to the reasons of the decomposition of 𝜓 is in the inner oscillations of the particle mass 
is de Broglie’s [17] work that considers a dynamics of a particle with a variable mass and the inner 
oscillations of the particle’s deformation coat [1]. Oudet [3-7] also applied this idea to the 
consideration of the spin of the electron. If mass is variable, we must recognize that mass, as a 
volumetric fractal deformation of a cell of the tessellattice, is a variable characteristic [1]: the 
volumetric fractal deformation is periodically transferred to a tense state of the cell, which occurs 
within a section equals the particle’s de Broglie wavelength. 

Thereby we admit the variability of the mass: the particle’s mass as a local deformation of the 
cell of space undergoes periodical transformations to another physical state, a state of tension 
(meaning the physical condition of being stretched or strained). Accordingly in any quantum 
mechanical Lagrangian/Hamiltonian we shall represent the classical parameter of mass as a 
variable parameter that is periodically substituted by this condition of tension. The frequency of 
the oscillations of the particle and its inerton cloud is 𝜈 = 𝐸/ℎ where E is the particle energy and 
h is Planck’s constant.  

So one pair 𝜙 = (𝜙=, 𝜙>) of a set of four sub wave functions can be related to the particle’s 
kinetic mass m and corresponding tension 𝚵. These two sub wave functions have to be presented 
by two antagonistic components: 𝜙= is for mass (which is responsible for attraction) and 𝜙> is for 
the tension (which is responsible for repulsion). In this case we cover Hofer’s idea expressed in 
relation (2), namely, that spin is in fact related to the density of the particle.  

The second pair 𝜂 = (𝜂=, 𝜂>)  of the four sub functions should have a structure similar to that 
of the 𝜙 = (𝜙=, 𝜙>). All the sub wave functions spread out to a distance covered by the amplitude 
L (13) of the inerton cloud, which usually far exceeds the particle’s Compton wavelength 𝜆Com:  

 
                     Λ = 𝜆Com𝑐>/𝜐>.                                                     (14) 
 
The initial conditions for a fermion are formed when it acquires a new momentum at the point 

of scattering. Therefore for the 𝜙 = (𝜙=, 𝜙>)-pair of four sub wave functions we have two 
opposite tendencies: (i) the fermion acquiring the vector velocity v occupies the mass state (the 
sub function 𝜙=); (ii) the fermion acquiring the velocity v attends the tension state (the sub function 
𝜙>). This is the real physical sense of antisymmetric wave functions of fermions.  
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Along the particle path in odd sections 𝜆  the particle emits inertons and the tension gradually 
grows in them; in even sections 𝜆  the inertons come back to the particle and their tension gradually 
drops down to the state of mass. So the particle’s inerton cloud is a carrier of the deformation 
potential of the particle. The mass appears as a local deformation, which is responsible for 
attraction. The tension component has to have an opposite property – it will induce a local repulsive 
potential.  

The described situation immediately finds the confirmation regarding the structure of the four 
sub wave functions in Baeßler’s [16] review paper on properties on neutrons: “one neutron spin-
component would be attracted, the other repelled at short distances”. 

Hence we naturally come to the Pauli exclusion principle declaring that two identical fermions 
cannot occupy the same quantum state simultaneously. In terms of the submicroscopic concept [1] 
this means that if two fermions reach the same place they will be attracted if they are characterized 
by the opposite sub wave functions, 𝜙=  and 𝜙>. However, if they are both are featured by the same 
sub wave functions (i.e. both by 𝜙=  and 𝜙=  or  𝜙> and 𝜙>) the particles will be repelled.  

Thus we have derived not only the wave y-function, which is the ratio 𝜓 = 𝑚(𝑥, 𝑡)/𝑚?. We also have 
obtained the pair of sub functions 𝜙 = (𝜙=, 𝜙>), which are responsible for the manifestation of spin [1] 

 
                𝜙=(𝑥, 𝑡) =

=
>
[1 + cos	(𝑘𝑥 − 𝜔𝑡)],                      (15) 

    𝜙>(𝑥, 𝑡) =
=
>
[1 − cos	(𝑘𝑥 − 𝜔𝑡)].          (16) 

 
The spinor 𝜙= describes the state of the particle when in the initial moment the particle emits its inertons, 
as its mass decreases  
                                                  𝑚(𝑥, 𝑡) = =

>
𝑚?[1 − cos	(𝑘𝑥 − 𝜔𝑡)],                                                    (17) 

though its tension increases  
 
                                                  Ξ(𝑥, 𝑡) = =

>
Ξmax[1 + cos	(𝑘𝑥 − 𝜔𝑡)] .                                                 (18) 

 
For the spinor 𝜙> the situation is opposite: 
 
                                         𝑚(𝑥, 𝑡) = =

>
𝑚?[1 + cos	(𝑘𝑥 − 𝜔𝑡)],                                                (19) 

                                                     Ξ(𝑥, 𝑡) = =
>
Ξmax[1 − cos	(𝑘𝑥 − 𝜔𝑡)]                                                (20) 

 
where 𝑘 = 2𝜋/𝜆 and 𝜔 = 2𝜋/𝑇.  The spinor  𝜙> describes the state of the particle when in the initial 
moment it absorbs its inertons, as its mass increases (19). These two situations are depicted in Fig. 1.  

The Pauli exclusion principle only works in the case when two fermions are close enough, i.e. 
when their inerton clouds overlap or at least touch each other, which means they start to interact 
only when approaching the distance at least of 2Λ (see Fig. 1). 
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Fig. 2. Particle with inertons. a – the particle emits inertons; its mass disintegrates in the accordance with 
the solution (15).  b – the particle absorbs inertons, or by de Broglie: inertons guide the particle; the 
particle’s mass is restored, which shows the solution (16).  
 
 
 
3. The half-integer angular momentum 

Now let us consider how the half-integer angular momentum appears when we deal with the 
described system of {particle + its inerton cloud}.  

If a classical particle rotates around a stationary axis with an angular velocity W, then its linear 
velocity is 𝜐 = Ω𝑟 where 𝑟 is the radius of the orbit. For such a motion the angular momentum is  

 
                                               𝑀 = 𝑚𝑟>Ω = 𝑚𝜐𝑟 = 𝑝𝑟                                                       (21) 

 
where 𝑝 is the momentum of the particle under consideration.  
     In the case of a canonical elementary particle such as an electron the situation will be the same 
if the radius of the orbit exceeds the amplitude (13) of the particle’s inerton cloud. That is, if Λ at 
least several times larger than the radius 𝑟 of the orbit, the system {particle + its inerton cloud} 
can be considered as a typical classical particle and its angular momentum will be equal to 𝑀 as 
the expression (21) presents.  
       The realm of quantum mechanics comes when the inequality Λ < 𝑟 holds. What is really 
happening? First of all the orbit becomes quantized, i.e. its length becomes equal to the particle’s 
de Broglie wavelength 𝜆,	namely, 2𝜋𝑟 = 𝜆. But what does this wavelength actually mean? The 
submicroscopic concept [1] explains this as shown in Fig. 2: The particle when moving rubs 
against cells of space and owing to the interaction the particle emits inertons. Hence the particle 
gradually loses its velocity and also mass because emitted inertons are really carriers of mass. 
Since the particle loses its velocity and mass synchronously, we may say that the particle loses its 
momentum 𝑝 within a section equal to the particle’s de Broglie wavelength	𝜆. Finally the particle 
must stop. But the real space is elastic. That is why the space returns the emitted inertons back to 
the particle, which happens within the next section 𝜆. Thus along the entire particle path, in each 
odd section the particle emits inertons, then in each even section the particle again absorbs its 
inertons restoring the initial values of the velocity 𝜐, the mass 𝑚 and the momentum  𝑝. 
       How the particle’s angular momentum should look like at such motion? The expression (21) 
clear points out that along the path 2𝜋𝑟 only two parameters are preserved, namely, the radius of 
the orbit 𝑟 and the angular velocity Ω. The momentum 𝑝 of the particle decays to zero (in each odd 
section of the path) and increases again to 𝑝	(in the next even section of the path). Hence for the 
one circle, which equals the particle’s de Broglie wavelength, i.e. 2𝜋𝑟 = 𝜆, we shall take the 
average value of the momentum < 𝑝 >= 𝑝/2. Then the magnitude of the particle’s angular 
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momentum becomes 𝑀 = 𝑝𝑟/2. Multiplying the left and right hand side of this expression by 2𝜋 
we obtain 2𝜋𝑀 = 𝑝𝜆/2 from which we immediately derive for the particle’s angular momentum:  
 
                                                              𝑀 = ℏ/2.                                                                      (22) 
 
4. Interactions with external fields 

So, the phenomenon of spin includes two possible initial states of the particle: the mass state 
(𝑚) and the tension state (Ξ), which are described by the two sub wave functions 𝜙= and 𝜙>, 
respectively (15) and (16). The Pauli equation (11) imposes an additional condition – spinors 
should provide the interaction with an applied magnetic field.  

The phenomenon of electric and magnetic properties of particles and the photon was elucidated 
[1] in the smallest detail. Namely, if the notion of mass is associated with the volumetric fractal 
deformation of a cell of space, the notion of the electric polarization (∇Φ) is related to the surface 
fractal of the cell studied. The magnetic property of the cell appears at the motion of this deformed 
polarized cell; namely, the magnetic property (A) is a tension of the electric state of the surface of 
the cell studied.   

The submicroscopic consideration [1] of the Maxwell equations allows us to conclude that the 
spinor sub wave functions have to relate to two states of vorticity of the particle: left and right, 
which are clearly illustrated in Fig. 3. Each charged moving particle is accompanied with its 
inerton cloud in which inertons additionally possess the surface polarization, i.e. inertons carry 
also electromagnetic properties – their surface are covered with electric fractals (the electric field 
generate by the gradient of the appropriate surface potential, ∇Φ), which periodically change to 
the tension state (i.e., magnetic property, the potential A).  

The  motion of such electromagnetic core particle and its inerton-photon cloud can be treated 
as a vortex in which the surface fractals are subject to libration, left or right. Let the sub wave 
function 𝜙= describes the left libration of the surface spikes of the particle (the unit polarization 
vector 𝐞left) and 𝜙> is responsible for the right libration (the unit polarization vector 𝐞right). Then 
the spinor components 𝜙= (15) and 𝜙> (16) become 

 
           𝜙=(𝑥, 𝑡) =

=
>
𝐞left[1 + cos	(𝑘𝑥 − 𝜔𝑡)],                               (23) 

                      𝜙>(𝑥, 𝑡) =
=
>
𝐞¢£¤¥¦	[1 − cos	(𝑘𝑥 − 𝜔𝑡)].                              (24)  
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Fig. 3. Motion of the negatively charged particle (i.e. the electron) that creates inerton-photons in its 
surrounding. Tangential state of spikes of the surface fractals, which is related to the creation of the 
magnetic field, appears on inerton-photons at the distance L from the electron in transverse directions to 
the line of the electron path. L is the amplitude of the electron’s inerton-photon cloud. 
 
 
        When the particle comes the odd section of its de Broglie wavelength 𝜆, the particle’s electric 
charge state   𝑒§ is transferred to the monopole state 𝑔�¨ . After coming the even section 𝜆, the 
particle again acquires its initial state of the electric charge. In the case of the particle with the 
positive charge (i.e. the positron), all the surface spikes are oriented outward of the particle.  
        In such a manner we may completely clarify the hidden mechanism of the Pauli exclusion 
principle. Two particles, whose separation is close to their de Broglie wavelengths 𝜆= + 𝜆>	along 
the line of the sum of their vector velocities or is closer than the amplitudes of their inerton clouds 
Λ= + Λ>, will interact through their inertons. In other words, the inerton clouds of these particles 
must overlap. The particles will be attracted if their sub wave functions are in counter phase, 
namely, if one particle is characterized by the mass state and the left vorticity and the other one by 
the tension state and the right vorticity. If the two characteristics in two different particles are the 
same, they will be repelled. For example, two particles shall be repelled if each of them is in the 
mass state (or in the tension state) and has the same vorticity.  

Usually in particle physics researchers use the term ‘helicity’ – a combination of the spin and 
the linear motion of a subatomic particle. Besides, in electrodynamics, particularly in optical 
physics, researchers use the term ‘polarization’ (left, right, circular, etc.) in application to photons. 
Here, we use the term ‘vorticity’ just to demonstrate the origin of the phenomenon, though all three 
characteristics – vorticity, helicity and polarization – work together (though the term ‘polarization’ 
is generally the most universal). 

Formally a stationary magnetic field is generated by a current, as the fourth Maxwell equation 
prescribes, . From the submicroscopic view point [1] the situation looks as follows. In 
a flow of charged particles each of the particles creates its proper inerton-photon cloud that spreads 
up to a distance provided by the amplitude of the inerton cloud (in the present case, the inerton-

0µ´ =B jÑ
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photon cloud)  Λ = 𝜆𝑐/𝜐	 (13). In the cloud, the state of inerton-photons gradually changes from 
pure electrical polarization (near the particle) to pure magnetic polarization (at the distance L in 
transverse directions to the particle path). Fig. 3 accounts for the mechanism of the formation of 
magnetic field. The vector potential 𝐀 is the origin of the magnetic field, which is evident from 
the fourth Maxwell equation written in terms of the vector potential 𝐀 and the magnetic monopole 
𝑔:  

 
               ∇ × (∇ × A) = 𝑔𝐯,   or    ∇(∇ ∙ 𝐀) − ∇>𝐀 = 𝑔𝐯.                            (25) 

 
Hence the magnetic monopole 𝑔 is the source for the vector potential 𝐀 and, therefore, for the 
magnetic field 𝐁.  
       It is interesting to consider at the submicroscopic level how a stationary magnetic field 
interacts with the particle spin. For the electron it is obvious: its inerton-photons induce the 
stationary magnetic field around the electron (these inerton-photons are shown in Fig. 3 as cells 
with bending spikes). These field carriers coming back to the electron touch it when it is in the 
monopole state 𝑔, which turns the electron to one of the two possible paths. Namely, the energy 
of the electron changes by the value of 𝐸↑(↓) = 𝜇̂­𝐵­, where 𝜇̂­ is the z-projection of the electron’s 
intrinsic magnetic moment and 𝐵­ is the stationary magnetic field directed along the z-axis. In the 
explicit form             

                                                 𝐸↑(↓) = ±=
>
𝑒ℏ𝐵­/𝑚.                                                           (26) 

 
If the orientation of 𝐵­ corresponds to the vorticity of 𝑔, then in expression (26) we shall choose 
the sign “+”; if the orientation of 𝐵­ is opposite to the vorticity of 𝑔, we choose the sign “-”. 
       Fig. 3 accounts for why the moving electron experiences a magnetic field but not an electric 
one. This is because a shell of the electron’s inerton-photon cloud is characterized by magnetically 
polarized inerton-photons. This automatically means that the cloud’s shell is able to significantly 
screen the core cell, i.e. the electron of an external electric polarization. 
       Nevertheless, magnetic moments of electrons can be controlled also with the help of electrical 
signals, which is an important task in spintronics (see, e.g. Ref. 18). The electron can be subjected 
to an oscillating electric field and as a result the electron periodically changes its position. A 
change in the spatial coordinate leads to a change in the spin-orbit interaction and the appearance 
of an effective alternating magnetic field, which, in turn, causes the spin of the electron to rotate 
(the Rabi oscillations). 
       One more filed that can influence electrons and their magnetic moments is an inerton field. 
Inerton signals, as carriers of mass, can easily be absorbed by the electron’s inerton-photon cloud 
because inertons in the cloud have the same physical properties as inertons of the inerton signal. 
Especially actively inerton signals can be absorbed when their frequency is in a resonance with the 
frequency 𝜈 of the electron as this frequency also is responsible for the exchange of inertons 
between the core cell (i.e. the electron itself) and its inerton cloud. An absorbed inerton may 
provoke slow motion of the electron whereas the electron has become heavier. Such an excited 
state may relax through the emission of a photon, which for example [19, 1] takes place in the 
phenomenon of sonoluminescence.   
 
5. Summary 

So, a set of the following characteristics of a canonical particle are responsible for its spin-1/2:  
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• The motion of the particle is associated with its rubbing against the real space, which 
is an actual substrate, and due to such interaction a cloud of inertons having a radius, 
or  amplitude Λ appears around the particle;  

• The particle together with inerton cloud are projected as the particle’s wave 𝜓-function 
to the formalism of conventional quantum mechanics; 

• The moving particle periodically comes from the mass state (𝑚) to the tension state (𝚵) 
and the particle’s de Broglie wavelength 𝜆 acts as the spatial period in this oscillating 
process; 

• The wave 𝜓-function is a four component spinor: (𝜙=, 𝜙>) and (𝜂=, 𝜂>) related to the 
mass 𝑚	and corresponding tension 𝚵 of the system {particle + its inerton cloud};  

• The particle has to be charged (𝑒), which at the motion periodically is periodically 
transferred (with the spatial period of l) to the monopole state (𝑔) that can be right or 
left. 

 
       If particles are either combined (bosons) or a quasi-particle (photon), then their spin is integral, 
since it is associated with a real vorticity of these particles.   

Thus, basic properties of the spin-1/2 are the presence of the charged state on the surface of a 
particle and the direction of polarization of the monopole state – left or right. Spin-1/2 is an integral 
property of a moving particle, which is associated with a libration of the surface fractals, i.e. spikes, 
which is given by the initial conditions – to the left or right. The half-integer angular momentum 
ℏ/2 of a spin-1/2 particle is caused by the periodical decay of the particle momentum, which is 
oscillated between the magnitudes 𝑝 and 0 within each odd and even sections of the particle path.  
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